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It has been suggested that numer~cal analysts tn~

volves the development and evaluation of methods for com~

puting required numerical results from given numerical data,

making the subject a part of the modern study of informa-

CHAPTER I

INTRODUCTION

tion processing. In the language of information processtng,

then, the given data are the input information, the re-
qUired results are the output information, and the problem

solving method the method of computation -- is known

as the algorithm.
Admittedly this description is oriented towards

applications and focuses effort on the search for algo-
rithms. This is not to derogate those who research the

supporting theory of numerical analysis, since theory has

an intrinsic interest of its own -- it is often beautiful

mathematics. Furthermore, theory is very important because

it contributes to the search for more and better algorithms.

Quite often, several algorithms are available for

producing desired results in an application; and normally

that is chosen which gives answers most quickly and accu-

rately.
Numerous methods for the solution of ordinary and

partial differential equations appear in mathematics

literature. Notable among these are those which are
L



familiar to the undergraduate student of numerical ana-

lysis, namely, those of Euler, Keun, Runge, Kutta, et al.

Of these the most popular algorithm seems presently to

be the Runge-Kutta technique because of its speed and
accuracy in digital computer applications.

Less widely used is the method which is the subject
of this thesis, an algorithm first applied by Sir Richard

Southwell in 1935; when he was professor of Engineering
Science at Oxford, and which has since been developed and

expanded upon by Southwell and his colleagues 11116], by
F. S. Shaw [21], by D. N. Allen [20J of London University,

and by others also mentioned in the bibliography. The
technique is known as the method of relaxation for the sol-

ution of simultaneous linear algebraic equations.

Designed originally to facilitate the analysis of
2positioned pin-jointed space frameworks, relaxation methods

have been extended to numerous branches of applied mathe-
matics. The main interest in these methods stems from their

usefulness in making possible the approximate solution of

practical physics problems.
Examples will first be given in this paper to

Relaxation Methods (New York: McGraw-1D.N.deG. Allen,
Hill, 1954), Preface.

2F.s.Shaw, Relaxation Methods (New York:Dover Publi-
L:ations, 1953), Introduction. ~



illustrate the use of relaxation in approximating solutions

to systems of simultaneous linear algebraic equations. Along

with the examples will be given a theorem on the improvement
of solutions under certain conditions.

Then this technique will be extended to the solution

of partial differential equations which have been approxi-

mated by systems of finite difference equations.
In the last section, the tediousness of hand calcu-

lation will be apparent from examples worked in detail;

and computer calculation will be demonstrated, first by

the Southwell methods and then by a method of successive

point relaxation apparently untried previously.

L



CHAPTER II
RELAXATION APPLIED TO SIMULTANEOUS LINEAR EQUATIONS

All applications of the relaxation method have an
underlying computational process which can most easily be

described in relation to the solution of a system of linear

algebraic equations.

To illustrate in easy form the basic operation, the

following example is used:

3xl + 2x2 - x3 = 20
(II-l) xl + 6x2 + 4x3 = 27

2xl - x2 + 9x3 = 16

a set of equations especially designed for rapid convergence

by relaxation. By conventional means the solution is found

to be xl = 5, x2 = 3, and x3 = 1.

The relaxation process begins by making an initial

guess of the values of the unknowns, and equations (11-1)

are rewr itten,

3xl + 2X2 x3 - 20 = rl

(II-2) xl + 6x2 + 4x3 - 27 = r2

2xl - x2 + 9x3 - 16 = r3,

where rl, r2, and r3 are the respective values of each left

member after an initial approximation has been substituted

for each unknown. These values are called residuals, and

~~ve: ~



It is apparent that if the solution values given

above were substituted in (11-2) then rl = r2 = r3 = 0;

and indeed this condition is made the goal of the rel-

51
3RESIDUAL ...When an equation of a linear system of n

equations in n unknowns has all terms On the left of

the equal sign, then the value of the left member of

the equation when approximations have been substituted

for all of the unknowns is called the residual of the
equation, denoted ri, (i = 1,2, •••,n).

axation process, namely, to modify the initial estimate

with subsequent "guesses" in such a way that the residuals

are forced to be zero, or as close to zero as approximate

techniques will allow. As the pattern of these modifications

develops, the procedure becomes much more of a reasoned

process than inefficient trial and error.

RELAXATION PROCESS ...a process for solving systems of

linear equations in which an initial approximation to the

solution is systematically altered with the purpose of

reducing equation residuals is called a relaxation process.

The initial approximation is left to the solver, and

it is just as well to choose xl = x2 = x3 = 0, leaving resi-

duals of rl = -20, r2 = -27, and r3 = -16. When these are

reduced to zero, the variables will coincidentally have

L 3Ibid., p. 7.



attained their correct values.

Each step in the calculation makes use of a multiple
application of a basic unit operation and records in a table

the operation used, the extent to which it is used, and the
consequent effect on the residuals. In this example, the

basic unit operations are fixl = 1, fix2= 1, and 6X3 = 1, where

the symbol 6 is used to denote an increment of addition. By

reference to equations (11-2) and Fig. 1, the effect of these

unit operations on the residuals is seen.
The reduction of residuals is achieved by applying

multiples of the basic unit operations. Repeated use of these

operations accomplishes the eventual complete reduction of

residuals. When the residual highest in absolute value is

relaxed in each step, the process is called the
STANDARD RELAXATION PROCESS -- a relaxation process in which

in each step the residual highest in absolute value is reduced

is called the standard relaxation process.
At the start of the relaxation the residual highest in

absolute value (also called the "largest" residual) is r2=-27.

The largest effect on r2 occurs when fix2 is used. Reduction

of r
2

from -27 to -3 uses the multiple fix2= 4, at which time

r
l

is increased by B to -12, and r3 is decreased by 4 to -20

(see Fig. 2). The resulting new values of the residuals are

also seen to be tabulated in Figure 2 with operation 2; and

L



r: .operat~on number 3 is used to
reduce the now largest resi-
dual r3 by using basic unit
operator 6x3 two times.

Residual rl now deviates
the most widely from the desired
goal and 6x1 is used 5 times in
operation 4. In step 5, make
note of the fact that the first
four steps have gone too far in
adjusting r2. No change in pro-

71
OPERATION llrl llr2llr

llxl = 1 3 1 2

llx2 = 1 2 6 -1

llx3 = 1 -1 4 9

Figure i "

~~ OPER. r, r,., r,., R",

1 All x =0 -20 -27 -16 63
2 6x2 = 4 -12 - 3 -20 35
3 6x3 = 2 -14 5 - 2 21
4 6Xl = 5 1 10 8 19
5 6x2 =-2 - 3 - 2 10 15
6 6x3 =-1 - 2 - 6 1 9
7 6X2 = 1 0 0 0 0

Figure 2'

cedure is required, however, and incrementing x2 by -2 im-
proves the picture.

Continuing to reduce the highest residuals leads to
the solution in two additional steps. The system solution
is determined by adding the incremental changes in each
unknown. Hence, xl = 5, x2 = 4 + l~2) + 1 = 3, and
x
3

= 2 + (-1) = 1. The solution is checked in the conven-

4Ibid., pp. 7 - 25.
L



8

tional manner.

It may be seen that while individual residuals in-
creased and decreased, apparently without pattern, the sum of

the absolute values of the residuals RT decreased with each
step. This sum will be called the

RESIDUAL TOTAL -- the sum of the absolute values of the

individual residuals is called the residual total, denoted

R =T

n
L Ir 0 I .i=l l

with each successive step, RT decreased, indicating

a very favorable improvement in the approximation to the
solution with each step. The nature of this improvement is

specified:

IMPROVEMENT a relaxation process step is said to be an

improvement if RT decreases with that step.

Now, improvement does not necessarily imply that a

solution is guaranteed. A slightly stronger condition is

indicated, thus:

CONVERGENCE -- a relaxation process is said to be conve~gent
of h zero as a limit as the process is carried
l RT approac es
out, that is, as the steps are continued.

This leads to:

L



n

iJJaikl) > 0,

91
SOLUTION a set of values for the variables in a system
of simultaneous linear equations, obtained by adding the

incremental changes in the variable to the initial approx-

imations, is a solution if the individual residuals are all

zero when these values are substituted in the equations.

Now the example (II-I) was chosen specifically for
its properties which facilitate rapid convergence. It was

possible to order equations (II-I) so that each main diagonal

coefficient was greater than or equal to the sum of the abso-

lute values of the remaining coefficients in the same column.
(The matrix of coefficients is said to be diagonally dominant

n
if Ia ..I > ~ Ia . .I for all j, with inequality for at least

1.1. - i=l 1.J

. ) 5one J. The conjecture for a general statement suggested

by this consideration leads to the following:

THEOREM: Let
n
L a . .x , = ci'j=l 1.J J

(i= 1,2, ... ,n) be a system

which can be ordered so that,

for all k = 1,2, ...n.
Then any step of the standard relaxation process

5 E Forsythe Cleve B. Moler, Computer SolutionGeorge . r • • H 11. 1 b 'c Systems(Englewood Cl1.ffs:Prent1.ce-a ,of L1.near A ge ra1. _
I967},p.ll. ~
L



10
performed on the system will be an improvement.

PROOF: Assume that relaxation step m - 1 has just been
performed in the given system (where integers m are used to

number the individual steps and where m = 0 implies that no

relaxation has been performed). Let the residuals be de-

noted by ri for all i.

Then R.r =
m-l

n
L Ir. I·i=l 1.

Assume that the residual

highest in absolute value is rk for k an element of

{l,2, ... ,n}.

Since
k-l
L I a·kl. 1 1.1.=

implies that

for any k, then the basic unit operation

effective in reducing rk to zero is ~xk And for

irk, the residuals will become
-rr. + a.k-k-.1. 1. akk

Then,

k-l
R_ = L Ir.-'I' . 1 1.

ID 1.-

n
L I r. +

i=k+l 1.(-r ) I ++ a. -k-1.k akk

<
k-l
L I r. Ii=l 1.

n
+ L Iril +
i=k+l

k-l
.l1.=1

L



k-l
= I 1r. 1i=l L

111
n

+ I 1r·1 +i=k+l ~
k-l

I ~rk_1 ( I Ia.k I
kk i=l ~

<
k-l

I 1r . 1i=l ~
n

+ I I r·1 +i=k+l ~

=
k-l
I \r.j

i=l ~
n

+ I Ir.\ + I r Ii=k+l ~ - k

n
= I 1r. 1i=l .i,

= Rrm-l

Hence, step m is an improvement. Q.E.D.Rr
m

< =>

While convergence is not assured by the above con-

clusion, every case tested converged rapidly, including the

following which was designed to have small improvement at

each step;

6xl - 4x2 - 3x3 + 14 = rl
-2xl - BX2 - BX3 + 134 = r2
-3xl - 3x2 + 12x3 = 6 = r3•

In figure 4 note that not only is improvement seen

in each step but convergence is rapid, (Fig. 3 is the
relaxation operation table). Rapid convergence was also
experienced in these experiments when rational coefficients

were used with diagonal elements very nearly equal in abso-
lute value to the sum of the absolute values of the remaining

column elements.

L



OPERATION llrl llr2 br3
llXl= 1 6 -2 -3
lIx2= 1 -4 -8 -3
lIx3= 1 -3 -8 12

12 I

Figure 3

m OPERATIm rl r2 r3
RTm

0 All x =0 14 134 6 154
1 lIx2 = H -50 6 -42 98
2 llxl = 8 - 2 - 10 166 78
3 llx3 = 5 -17 - 50 - 6 73
4 lIx2 =-6 7 - 2 12 21
5 llx3 =-1 10 6 0 16
6 llxl =-1 4 8 3 15
7 llx2 = 1 0 0 0 0

Figure 4

Some systems of linear equations are so conditioned
that the standard relaxation process will diverge unless
special adjustments are made in the structure of the pro-
cess itself? There are a number of refinements of the basic
relaxation process which are discussed in detail in Shaw [21]
and in Allen [20]. These include over-relaxation, block-
relaxation, and other topics which are useful when equations

L 6Allen, op. cit., pp. 21-23.



I13
are ill-conditioned for rapid convergence. However, the

finite-difference approximations discussed in the next

chapter are systems well suited for application of the
standard relaxation process, as will be seen.

L



provide the values of ¢ at x = a and x = b. The Taylor series

CHAPTER III

FINITE DIFFERENCE APPROXIMATIONS TO

ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

This section is largely a precis of thorough treat-
ments in Shaw [21] and Allen [20]; and it is included here
for clarity and continuity.

A general solution to a differential equation provides
a function which can be evaluated at any point in its domain.

equally spaced points of subdivision along the range of

A relaxational solution is, of course, numerical, and consists
of values of the wanted function determined at certain

integration.
Suppose the general ordinary differential equation is

given as

d2¢--- + f(x) = 0,
dx2

and that the solution is sought over the domain a < x < b.

(III-I)

The domain is divided into n intervals of equal length; and
n is chosen to provide enough points for a reasonably accu-

rate solution without overburdening one with excess compu-

tation. The uniform interval length, denoted h, is then

given by
h = b - a

n

condl.'tl.'onsfor the specific problem willThe boundary

L



15 I
expansion about the typical point of subd'v's'on~ ~ ~ xi is used

the finite difference approximation for 'V . The
1-

to obtain

expansion about x. is
1-

cjl(x)= cjl(x.)+ (x-xlcjl'(x,)+ (X-X.)2q,"(X.)
1- i ~ --1- 2! 1-- +

Evaluating the series for x = X.
1-

+ h gives

+ •••

Evaluation for x = xi - h gives

Adding the two series:

or, approximately,

(III-2) h2q," (x.) = q,(x.+h) + q,(x.-h) - 2q,(x.)
11.1. 1.

in which the error is 2h'q,""( ) hi hd4' x . + ..., W 1-C ecreases as
• 1-

h is made smaller.

Now, according to relation (111-2), satisfaction of

(111-1) required that q,(x.+h) + q,(x.-h) - 2q,(x.)+ h2f(x.)=O.1. 1. 1. -1

This equation is typical of those which connect every set of
cjlvalues at every set of three successive points of subdivi-

sion(disregarding the endpoints as points of subdivision).
The effect is, then, that of replacing the differential equa-

L



l~

tion (111-1) with a set of n-l 1 b 'a ge ralC equations which can
be satisfied by n-l values of <p at n-l points.

In two dimensions, equation (111-1) can be extended
to Poisson's equation:

(III-3) 02d> + ~d>6X2 oy2 + f(x,y) = O.

Whereas in one dimension the range of integration was
divided up by points of subdivision into subintervals of equal

length, in two dimensions an area of integration is subdivi-

ded by a uniform mesh of points (x,y) such that a<x<b and

c~y~d. Usually la-bl=lc-d~,providing a particular space or

region which is a square. In the region thus established,

point (xi'Yi) is the typical point, separated vertically
and horizontally from neighboring points in the mesh by the

b-adistance h = n
d-c= --n

Intervals [a,b] and [c,d] are of the

same length; and each is divided into n subdivisions forming
7the square mesh.

(111-4) depicts typical node (xi'Yi)
, t' f 02d>The finite difference approxlma lon or 0i2

of the net.

is given by

(III-2) as

(III-4 )
s: 2 d> '" (x +hn. v ) + '" (x , -h, v .),_----=2:.!"':...:(.:.:x,,v,)~2 = :f..-i~i~--'--'''',-,,:.ol~l- '" l.!."Ll-
ox h2

Similarly, the finite difference approximation to

'Ibid., pp. 54-59.
L



17 I
02q,

2 isoy
~(x.,v.+h) + ~(x Y -h)

_'t' -J. ..c..LJ.":"':":"---'-.J:·r~i~'-i
h-2

- 2q,(x.,v.)
l-'-Ll-

Hence, equation (111-3) becomes, in approximation, a system

of (n-l)2 equations in (n+l)2unknowns, with typical equation-

q,(xi+h,y,)+<!>(x,-h,y,)+<!>(x,,y.+h)+<!>(x.,y.-h)-4cp(x.,y.)
.... .L. .. 1 J.1 11

+ h2f(x. ,y.) = 0
J. J.

In two dimensions boundary points have their values
established by boundary conditions, hence no equations for

these points are considered. The values of the function are

already known at these points, so they are not sUbjected to

relaxation. (x.,y.), where (x.,y.) is a boundary point,
J. J. l J.But

is used in the initial computation of residuals; after this

these points have no effect on the relaxation process.
Chapter IV continues with the discussion of relaxation

applied to the systems produced by the methods of this section.

Finite-difference approximations to other frequently used
second, third, and fourth order differential equations may

be found in Shaw [21] and Allen [20].

L



CHAPTER IV

RELAXATION METHODS FOR SOLVING PARTIAL

DIFFERENTIAL EQUATIONS OF THE SECOND ORDER

The solution to specific equation

will be approximated by relaxation on the square region

Boundary conditions are specified such that

~(Xi'Yi) = ° on the border of the square region, that is,

wherever xi = 0,4 or Yi = 0,4.

The region is subdivided into squares of length
h = 1, the mesh being kept coarse deliberately for ease of

description.
The general approximation equation is written in

residual form by reference to Chapter III, as follows:

(IV-I)

-4<P(x.,y.)
]. ].

2+ 2xi + Yi = r.a.

Refer to Figure 5. In this demonstration the nodes

are numbered consecutively,as shown, to make possible a

simplified notation for the finite-difference system. Then

the system of equations with h = 1, of which (IV-I) is the
pattern, contains nine equations in only nine unknowns, as

~OllOWS: (boundary values included for calculating residuals~



�8 + �2 + �6 + ~'2

$9 + ~. + $7 + ~

<I> +
I 0 ~1 ,

4<1>+ (2x2+y) = r
7 7 7

<I> + ~ +17 __ ,_, ~ 1 1

4~ + (2x2+y) = r
B B B

4~ + (2x2+y)
9 9

= r
9

(IV-2) � + ~ + ~B +
1 8 1 It ~'2

4~ + (2x2+y) = r
12 12 12

$ + <I> + ~9 + ~"
1 9 1 5 --&...:L

~+<I>+~+~
22 18 12 16

<I> + <I> + <I> + ~
23 19 __ ,_, 17

~ + ~ + ~ + ~'B
21t 20 lit

4~ + (2x2+y) = r
13 13 13

4~ + (2x2+y) = r
1 It 1 It 1 It

4~ + (2x2+y) = r
17 17 17

4<1>+ (2x2+y) = r
18 18 18

4~ + (2x2+y) = r
19 19 19

where (2x2+Y)k is the value of f(x,y) at the node numbered k.

The relaxation operator effecting the biggest change

in rk is 6�k = 1, since rk will change by 4 units for each

increment of 6~k. No other operator would change rk by more

than one unit. The effect of this incremental change is

observed by reference to equations (IV-2) and Figure 6.
Attention is focused on a single node, the point numbered 13.

Residual r at this point is reduced when necessary by
I •

application of the 6~ operator. Among equations (IV-2),
1 •

<I> appears underlined.
1 ,

L



4 I 2 3 4

3 6 7 8 9 I

2 I I I 2 I 3 I 4 1

I 6 I 7 1 8 I 9
1

2

2 I 22 2 3 24

0 1 2 3 4

5

20 I
o

5

o

5

Figure 5

+1
The result of 6¢ = 1 is

I 3

to reduce r by four units. At
I 3

8

the same time r ,r ,r ,and
81214

+1
+1 }----I-4 ;-------{+ 1

I 2 I 4I 3

r are increased by one unit
I 8

each because ¢ appears in each
I 3

of the equations involving those
+1

1 8

residuals. All other residuals

are unaffected. Thus, Figure 6 Figure 6

can be used as a relaxation operator
in two dimensions~ applicable at any node because relaxation

at a point affects only the four neighboring points.
It must be noted that while 6¢ = 1 reduces the resi-

I 3

dual for one equation, the residual total RT may remain the

L BShaw, op. cit., pp. 45-51.



the upper left of the nodes.
L

In this example ¢k = 0 for

same, in which case there is no improvement in the resi-
dual picture as a whole.
points

Improvement occurs in interior
when adjacent nodes have residuals opposite in sign.

reduction in the center node's residual would alsoThen a

cause some reduction l.'nth d'e a ]acent nodes of opposite sign.
Improvement always occurs when a reduction is made on

a node adjacent to the boundary, such as node 9. With ll¢ =19 r

r is reduced four units, and rand r are increased one
9 e 11+

unit each. But since ¢ = ¢ = 0, by the boundary conditions,
, 1 0

it is never necessary to relax r or r
, 1 0

The practical

result is that half of the units of r have .been "swept" out
9

of the picture, with the consequent reduction in RT of two

units.
Experiments have shown that the standard relaxation

process, continued in this manner by always reducing the
residual highest in absolute value (the largest residual),

can be used to remove as much of the total residual as de-
sired, leading to a solution which is as accurate as desired.

The "hand" version of the relaxation solution is

carried out on a diagram of the problem region itself (Fig.?).

The nodes are left unnumbered to keep from cluttering the

diagram.
The initial approximations to the ¢k are placed at



o o 221o 0 0

0 5 0 11 0 21 0
9 16 1 5 1

4 4 0 7
5 11

0 4 0 10 0 20 0

9 16 25
20 2 6 1

5 5 0 7

0 3
12

0 9 0 19 0

15 25
20 3 6 1

0 0 0 0

o

o

o

o

Figure 7
Steps 1 - 5

all k is the first approximation, where k is the node number.

Then the rk are calculated and placed at the upper

right of each node. The initial conditions for the boundary

are entered as permanent values for the ¢k on the boundary.
So the numbers above the line at the nodes in Figure 7 rep-

resent the condition before relaxation begins. The small

numbers shown indicate the relaxation step numbers as

described be low.
The largest residual is seen to be 21 at node 9.

= 5, indicated ~ith a 5 at the lower leftThe increment 6¢
9

of node 9, results in a decrease in r by 20 units to a
9

placed at the lower right
12alue of 1. The new residual is



2;l
of node 9 opposite the operation mUltiple
There is a

which produced it.

and in r
1~

concurrent change in r •
of five units from 20 to 25. Five units are moved

of +5 units from 11 to 16,

onto the right boundary at node 10 and five units are moved
onto the upper boundary at node 4. Since no relaxation need

be carried on at the boundary nodes, there is no way these

units can be reintroduced as residuals at interior nodes.
Hence, these 10 units are effectively eliminated from RT, and

relaxation step 1 is complete.
The largest residual is now +25 at node 14. Step 2

uses ll4>l~ = 6 to reduce r to 1. At the same time, r is
1 '+ 1 9

increased to 25, r goes to 16 and r goes to 7. Not only
1 3 9

are five units of the original r "swept over the right1 4

boundary", but one unit of r from the first point relaxation
9

is also eliminated, a salutary effect indeed.
After five steps of the relaxation, crowding of the

diagram occurs; so the status quo is reentered on another

blank diagram (Figure 8). Subsequent frames, each detailing

five point-relaxations, are seen following this page, ending

with step 47.
At step 47 all residuals have been reduced to less

which is 1. It should be obvious thatthan 1 except for r
1 3

the process does continue to improve as long as it is carried

on and that an even greater refinement could be made in
L

the
~



0 9 4 5 5 11
9 2 1 8 14

3 10 8 3 2

0 9 5 0 6 12
11 5 7 3 a

I 0 2 3 8 3
10

a 3 a 20 6 1
8 5 a b

10 9

24

FJ.gure 8
Steps 6 - 10

2 3 4 .La 8 2

5 1 1 2 2 4
7 5

2 3 5 ilO 9 3

6 2 6
8 1 2 3 a 8

1 5 2 a 2

o 1 n 'i o 6 9

1 3 2 2 3 1 4 2 1
4 5

7

Figure 9
Steps 11 - 15



2 7 6 5 8 4
19 2 1 7 6

1 9 82 0 2 1 1 8 2 0
2

4 0 8 2 9 8

2 4 1 6 2 0
6 2
8

., " 5 7 8 1
6 1 7 2 -1 3

5

25

Figure 10
Steps 16 - 20

11 8 1 10 2
2 3 3

4 2 8 8 11 2
4 z ! 2 0 4
5 1 5

2 5 1 1 2 2' 1 1

? r 7 .' R ~
22 1 2

~
23 1 1

3 2
3

Figure 11
Steps 21 - 25
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1

" 1 10 2 12 1
2 3 2
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30 1 0
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4 28 1 -1 3

29 1 0 0
1
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Figure 12
Steps 26 - 30

4 3 q I, 1 1 In,.
1 -1 2 1

fO 35 .i 0 1i2
2 1
2

5 3 11 0 12 3
4 1 4

32 1 0 2 34 1 0
2~

4 0 8 h 9 ,
1 ~ 1 -1

0

Figure 13
Steps 31 - 35
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" n 1 1 ?1 13 0

i ' 6
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2 2

1 1
14 ' 0 ~ 0

• , R 2 10 0
11 21 1

2 2
, 7 ! !"

I -1 a
2 ,
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Figure 14
Steps 36 - 40

<;
1 1 ll! 12 92 1 -

1 1i ,,
1i ' 2 1 1

2 -2
, 5 1 1 02 -a

6 1 lli 1~ 13~ 0
1i 1 I-~, 1 2 2,, 1 , c I-~ 12 -2

0 1 1i
2

41 -i si h 10 s,
0 ~1 1,
1 2 ' 6 1 I-~2 2,, 1 02

1

Figure 15
steps 41 - 46



5 -~ 10 0 ll~ 1
4

3
4

6J 0 12 1 134 l~2

1 47 ~I-~13a
4~ ! 9 ! 10~ -a

- 1
4

2;l

Figure 16
Step 47 only.

solution if one were sUfficiently patient. The solution at

this stage is determined by summing the increment changes

at each of the nodes. These sums are totalled in Figure 16.
This approximation to the solution of the example

equation is regrettably a coarse one because of the choice

of mesh size. If more thorough coverage of the area of

integration is wanted, the number n can be increased, with

the consequent reduction in the size of h.
It must be remembered that the above solution did not

involve consideration of h since h was equal to one with
n = 4. But doubling n results in halving the value of h.

L ~



Hence, for h = ~ in the same square region,

= 4>k-n-l+

= 0
or,

4>k-n-l + 4>k-l + 4>k+n+l + 4>k+l - 44>k + ~f(xk'Yk) = 0,

where k is the node numbered as in figure 5.
Doubling n also produces a total of (2n+l)' = 81 nodes

instead of the original 25. With the boundary values equal

to zero, the number of equations to be solved is (n-l)' = 49,

in (n-l)2 _ 4 = 49 unknowns (the four corner nodes are not

included in any equations of interior nodes).
It is not necessary in producing this refinement of the

solution to begin with all values of 4>kset equal to zero.
The work done on the coarser net led to values for nine points

which should be a better approximation to the function at
those points than any other initial guess. So the solution is

begun with this previous solution in place. Then the resi-
duals are recalculated for all 49 interior nodes, as shown in

Figure 17.
As action swirls around the nodes with solutions al-

Leady in place, the relaxation at adjacent points has the --l
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0 4 0 S~ 0 8 0 h i l o 16 0 21~ 0 b8
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I
2:
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Figure 17
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effect also of reducing r 'd 1es~ ua s here rather than increasing
them. This means that changes in the functional value at

these nodes, when called for, may be relatively very small.
This is to be expected since th ' , , 1e ~n~t~a approximation carried
over from the solution for h = 1 should be fairly good.

It is evident from figure 17 that relaxation by pencil

and paper methods quickly becomes tedious. In fact, even the

most dedicated relaxer begins looking for other forms of
relaxation. Using the standard relaxation process, 614 indi-

vidual point relaxations are required before the solution is

improved to the point where no residual has an absolute value

greater than one. No fewer than 971 point operations must be

carried out before all residuals are within one-tenth from

zero.
The digital electronic computer thrives on just this

sort of repetitive work, providing much more accurate results

in seconds than the human solver could expect in many hours.

Costiliness of computer time makes it imperative to design

applications programs which are as efficient as possible.
Computer time considerations, in fact, are what have made rel-

axation methods less desirable than others in finding approx-

imate solutions to partial differential equations.
A major consideration in carrying out the standard rel-

axation process on a computer is the time used simply in
~ocating the largest residual at each step. The human sOlve~
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can locate this node in a relatively short elapsed time, but
the computer must perform a brute force search by comparing
every node with the other nodes. The time required for this
search is appreciably longer than .~s the time required to per-
form the point relaxation itself. For each point relaxation
n comparison operations must be executed to locate the next

largest residual.

Using again the example equation

i..:d>
6y~ + (2x2 + y) = 0,

solving on the region 1 < x < S, 1 < Y ~ S, with h = l,(n=6),

and using the computer for the arithmetic, a total of 614 point

relaxations were required to reduce the network to the place

where no residual had an absolute value greater than or equal

to 1. Involved in the search for the highest residual (always

considered as highest in absolute value, bear in mind) ,were no
fewer than 36 x 614 = 21,104 individual comparison operations

employing a significant amount of the time required to reach

the approximate solution. In general, the number of comparisons

is (n-l)2 multiplied by the number of point-relaxations re-

quired. The algorithm would obviously be much more feasible

if this major barrier to efficiency could be eliminated.
Experiment has indicated that apparently relaxation

need not be applied to the residual highest in absolute value

at each step in order for improvement to take place, even
L ~



in the successive point process instead of the 614 of the

Southwell process. But, the 21,104 comparisons were not

needed in the former method. Comparisons do not take as

33
though this is advocated by Southwell, Allen, Shaw, and
others. Further it seems po' t b ., ~n s may e relaxed ~n successive
order without respect to the size of the residual. While

efficiency is impaired in moving the residuals over the

boundaries, that is to say, while RT does not decrease as

rapidly as in the standard process, nevertheless approximate
solutions are obtained which are as accurate, without using

the time-consuming comparisons in the computer program.
Working a simpler example by hand readily illustrateS that
the successive-point technique takes more point-relaxations

and so is less efficient on pencil and paper. But this
extra work is much more than offset in computer solutions by

the saving of time in elimination of comparisons. In the
example just above, a total of 756 relaxations were required

much time as relaxations on the computer; and a rough est-

imate of time savings based on speed of individual arith-

metic operations in the RCA SPECTRA-70 computer is that a
savings of 75% was effected using the points-in-succession

algorithm. Figure 18 shows the condition of the network

with residuals reduced to less than one. Figure 19 shows
the network with the largest residual reduced to less than

L 1. Both figures compare the southwell method and the ~
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Pain

THWELL METHOD
SUCCESSIVE-POINT METHOD

t Relaxations 614
arisons

Point Relaxations 756
22,140 Comparisons 0

k rk <Pk k rk <Pk
T O.b~b ~~. 8T:> .I. u • .J..j::>
2 0.655 82.347

:>O • .J.U\I
2 0.152 82.728

3 0.633 93.917 3 0.137 94.328
4 0.684 95.006 4 0.099 95.451
5 0.000 85.317 5 0.049 85.625
6 0.340 58.922 6 0.000 59.206
7 0.699 68.571 7 0.354 68.806
8 0.649 106.308 8 0.439 106.636
9 0.344 123.949 9 O~ 246 124.270

10 0.715 125.475 10 0.335 125.948
11 0.702 1l0.339 11 0.198 110.895
12 0.644 72.712 12 0.049 73.199
13 0.260 61. 857 13 0.540 61.843
14 0.984 99.016 14 0.691 99.180
15 0.719 117.440 15 0.683 117.596
16 0.329 119.322 16 0.548 119.510
17 0.641 103.553 17 0.335 104.006
18 0.978 66.232 18 0.099 66.744
19 0.255 47.103 19 0.644 46.927
20 0.881 77.443 20 0.839 77.336
21 0.691 93.191 21 0.840 93.106
22 0.000 95.151 22 0.682 95.039
23 0.651 81.961 23 0.426 82.208
24 0.020 51. 640 24 0.137 51.871
25 0.5 9 30.365 25 0.622 30.171
26 0.000 51. 344 26 0.828 50.972
27 0.951 62.420 27 0.839 62.291
28 0.329 64.130 28 0.690 64.015
29 0.606 55.151 29 0.439 55.344
30 0.679 34.368 30 0.152 34.669
31 0.268 14.561 31 0.452 14.409
32 0.274 25.149 32 0.622 24.918
33 0.839 30.965 33 0.643 30.911
34 0.329 32.129 34 0.539 32.077

35 0.637 27.751 35 0.353 27.920

36 0.681 17.359 36 0.135 17.614

SOU

Camp

L Figure 19
Figure 18
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successive-point method.

Appendix A shows the hand calculation of the example
for the coarser net of nl.'ne d dno es use at the beginning of
the chapter but employing successive-point relaxation. Notice

that 57 calculations were used rather than the 47 in the pre-

vious calculation in reducing the system to roughly the same

level of approximation.

In successive-point relaxation, as stated, each point

is relaxed in succession until all points have been relaxed.
The process is then repeated from the first point until the
residual total is as small as desired. The concluding para-

graphs of this thesis describe and prove a theorem which
certifies the validity of the successive-point relaxation

process.
First, two definitions:

RELAXATION CYCLE -- the successive-point relaxation process

applied 50 that each node in the mesh is relaxed exactly once

is called a relaxation cycle.

the operation involving the successiveCYCLICAL OPERATION --
, '~k = rk/4 for all k is called areduction of all rk U51.ng il~

cyclical operation, denoted o.

L
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2l 22-t""-=------I--=..=...--- 2.n-l2,n-2

n-2,1 n-2,2 ____ l--n_-_2..:.,_n_-_2.j.:.:n;..-.;2,n-l

____ +-n_-_l...:,_n_-_2+:n:...-.:;1,n-ln-l,2n-l,l

Figure 20

THEOREM The cyclical operation a,applied to a system
of finite-difference equations which is an approximation to

Poisson's equation, is an improvement.

PROOF __ Assume that cyclical operation number m-l has
been performed (m=O implies that no relaxation has taken

place), and that n-l
li=lL

R.rm-l =



the other two

+r ../4~J
being

to each of two adjacent interior points,

36

(Note that the numbering of node h bs as een changed to allow
for double sUbscripting and that d ., or er~ng of numbers has
been altered to correspond with the analogous subscripting
of a matrix of coefficients. See Figure 20).

When 0 is applied for the mth time, the following

occur:

(a) Each r ..
~J

r ..
is altered by -4ll<j>.. = -4 2:J.~J 4 r

or,

effectively, each r .. is reduced to zero, reducing R~J Tm-l

also to zero.
(b) Each point ij not adjacent to the boundary

contributes +r ../4 to each of four adjacent points, increasing
~J

~ by the total of such contributions.
(c) Each point ij adjacent to the boundary but not

interior

point contributes +r ../4 to each of three adjacent
~J

points, the fourth point being a boundary point and
a corner

not considered in computing the RT•

(d) Each corner point ij adjacent to the boundary

contributes
boundary points.

Hence, under 0 r

R.rm
= R.r -m-l

n-2
+ 4 L

i=2

n-2
Lj=2

r ..
2:J. +

4
(expression
continued
next pa..':j)

L



n-2
+ 3 L

i=2

ri1( -4- +
r.1.,n-1

4

n-2
) + 3 L (

j=2
.::..p/n-1,j )
4 4

( r11 r 1 1 r1 r
+ 2

__ + n- 1 14 4' + 4,n- + n-4' n-1 )

=
n-2
L

i=2

n-2
L

j=2
r ...1.J

+ r. 1) +1,n-

n-2
L (r1·j=2 J

1+ ~ (r11 + rn-1,1 + r1 + r~ ,n-1 n-1,n-1)

n-2
< L

i=2

n-2
L 1 z . ·1j=2 1.J

+ I r 1 ·1)n- ,J

=
n-1
.L1.=1

n-1
L
j=1

Ir. ·11.J

= ~ Hence, a is an improvement.
m-1 . Q.E.D.

L
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0 5 0 11 0 21
1 1 1 12 24

4 • 3 0
3

0 4 10 20
5 11 2.$

2 1 1 14
2 5 3 2
5

0 . .3 Iq 9
4 10

3 1 0 13

Calculation of solution
by method of successive-
point relaxation.

Steps 1 - 5

1 f! 3 3 0 ~4
1 0 .1 ~2

;I 7 0 u

10 7

1 5 3 2 0 23
6 5 29

1 1 1 2 12 8 7 1
3 14 8

1 0 0 13 0 19
3 • 3 1 22
5 8 29

9 9 7 11 2 1 1

seeps 6 - 12



5~ 0 9~ ! 11 0

6~ a 12~ 0 13~ ~

4~ 0 8~ lO~ 0

Approximate Solution with

39

Ir·1 <1 for all i.~

57 steps required.
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western.Lou1s1ana, Lafayette, Louisiana.
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This thesis develops the topic of relaxation methods

in an expository manner to the place where a theorem can be

introduced which specifies the conditions sufficient for
improvement to take place in the methods applied to systems

of linear algebraic equations. Then, after tracing the

development of techniques for approx~ating differential

equations by systems of linear equations of the finite-
difference form, solutions by Richard southwell's methods

and by an innovative new method of successive-point rel-

axation are compared, using a computer for arithmetical

calculations. Finally, a theorem is introduced which

validates the new method in a manner parallel to that of

the first theorem.
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